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Spatially structured subpopulations (city, regions, etc).

Epidemic dynamic in each subpopulation is the same as in the single population scheme, but individuals travel

Colizza, Vespignani. Journal of Theoretical Biology 251 (2008) 450—-467



Reaction-diffusion analogy for mobility

We consider a network of V populations (nodes), where each node hosts /V; individuals, which can be in state S, | or R

The total population is preserved as: N = 2 N,

l
each individual moves from i to | with a diffusion rate dij ~ node degree or population size or mobility matrix

Diffusion: individuals travel from one node to another

dl-j: rate at which an individual is moving from subpopulation i to subpopulation j

W
d.=— where w.. i1s known real-world mobility between subpopulations
v N, 1

l

Reaction: in each subpopulation, individuals interact according to an epidemic compartmental model in homogenous mixing

(mass action principle)

Colizza, Vespignani. Journal of Theoretical Biology 251 (2008) 450—-467



Recap on the mass-action principle

Force of infection: the rate at which susceptible individuals become infectious

A=pi=p ~ force of infection acting within the population at each subpopulation

Mass-action: within each population, new infections are produced by the density of contacts of susceptible and infected individuals

S + I — 21 principle of mass-action: chemical reagents amount determines the product amount

Homogenous mixing: all individuals interact with the same rate, like particles in a box at given temperature T

a5 — i =psL —
a T TN TH
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The metapopulation scheme
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Colizza, Vespignani. Journal of Theoretical Biology 251 (2008) 450—-467



Metapopulation models with markovian mobility

Markovian mobility: individuals move among populations without memory, the probability of moving from i to j depends
only on the average flows between i and j

Indistinguishability: individuals are not distinguishable, i.e. not labelled, they do not belong to a patch.
A susceptible in i moving in | might come from anywhere

non-markovianity of mobility impacts invasion threshold

)

Balcan D, Vespignani A. Invasion threshold in structured populations with recurrent mobility patterns. J Theor Biol. 2012



Rvachev-Longini model (1985):
first model of global spread using diffusion rates in compartmental models

xl-(t) : number of susceptibles in i at time t

ui(T . l‘) : n of exposed in | at time t who were infected at t-tau
yi(T, 1) :n of infected in i at time who were infected at t-tau
Zi(t) : n of recovered in i at time t

¥(T) :incubation period distribution

T1 : max of incubation period

5(1‘ ) . infectious period distribution

7> :max of infectious period

I : n of populations pi(l‘) . population of i, preserved

nll+((;+1)+(,+1)] oDEs




Rvachev-Longini model

Rvachev-Longini model (1985):
first model of global spread using diffusion rates in compartmental models

(3] (%)
X(f) : number of susceptibles in i at time t x(t) + Z u(z, 1) + Z vz, t) + z(t) = p;, V¢t
7=() 7=0

ui(T ] t) : n of exposed in | at time t who were infected at t-tau

yl-(T . t) : n of infected in i at time who were infected at t-tau

Zi(t) . n of recovered in i at time t x(1+1) = 9[%(’)]&— u,(0,1), (9)
(r+1,t+1)=[1—-v(7)]| Q| u,(7.1)], =0,1,..., -1, 10

7(7) . Incubation period distribution ui(r ) =[1=v(7)] .[ , (7 , )] ! n (10)

T1 :max of incubation period (r41.041)= y(r)Qlu,(7,0)]+[1-8(r)}yi(r, 1), 7=0.1,....7,
a , | [1-8(7)]y(7,t), 7=7+1, 7, +2,..., 7, —1, (11)

5(1‘) . infectious period distribution

7> :max of infectious period w(t+1)= }i vy(7)Q|u,(7,1)], (12)

1 :n of populations  p;(f) : population of i, preserved Output

wi(t) : new infected on time t

nll+(zy+1)+(z,+1)] oDEs

Rvacheyv, Leonid A., and Ira M. Longini Jr. "A mathematical model for the global spread of influenza." Mathematical biosciences 75.1 (1985): 3-22.



Rvachev-Longini model (1985):
first model of global spread using diffusion rates in compartmental models

O;; :nxn matrix of trips from i to j (symmetric!) x(t+1)=8[x,(1)] - u.(0,7), (9)

p;(¢) : population of i, preserved u(r+1,0+1)=[1-vy(n)]2[u(7.9)]. 7=01,...7-1, (10)
_[y(melu(r, 0] +[1-8(n)]y(r.0), 7=01,....7,

yi(r+1,0+1) = { [1- 8-(1')]yi(w"r,t), r=n+1,7,+2,...,, -1, (11)

Transport operator w(1+1) = E.OY( M) Qlu (7, 1)], (12)
n O O
i ij
QAN =AM+ ) |A——A—
=1 Pj Pi

travel rates




Rvachev-Longini model
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* Empirical data are joint with the surrounding region.

F1G. 1. A schematic plot of the forecasted h(r) and actual a(r) course of the 1968-1969 influenza pandemic. Each
of the following symbols represents the daily forecasted morbidity incidence per 10° over four calendar days: @ for
b.(1) <10, - for 10 < b,(1) <100, + for 100 > b,(1), and T when the peak in morbidity occurred during the four days
indicated. When a symbol falls directly on a border between months, this indicates two days in each month.

Rvachey, Leonid A., and Ira M. Longini Jr. "A mathematical model for the global spread of influenza." Mathematical biosciences 75.1 (1985): 3-22.
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Encodes the average behavior
Transport operator is averaged

*_t=160 days TN 0

Fig. 4 Geographical representation of the evolution in the US of the SIR epidemic specified
in the text with Hong Kong as initial seed. States are grouped according to the nine influenza
surveillance regions. The color code corresponds to the prevalence in each region, from 0 to the
maximum value reached (pmax). The first set of maps provides the original US maps, while the
second shows the corresponding cartograms obtained by rescaling each region according to its
population (Gastner and Newman, 2004). Three representations of the airport network restricted
to the United States are also shown, corresponding to three different snapshots of the epidemic
diffusion. For the sake of visualization, only the 100 airports with largest traffic in the US are
shown, however the data have been obtained by using the full data set including 3100 airports.
The color code is the same adopted for the maps.

0

Fig. 5 Geographical representation of the evolution in Europe of the SIR epidemics starting in
Hong Kong. The color code corresponds to the prevalence in each European country, from 0 to
the maximum value reached (pmax). The first set of maps provides the original maps of Europe,
while the second shows the corresponding cartograms obtained by rescaling each country accord-
ing to its population (Gastner and Newman, 2004). Three representations of the airport network
restricted to Europe are also shown, corresponding to three different snapshots of the epidemic
diffusion. For the sake of visualization, only the 100 airports with largest traffic in Europe are
shown, however the data have been obtained by using the full data set including 3100 airports.
The color code is the same adopted for the maps.
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Hands on session

Go to https://qgithub.com/mattiamazzoli/workshop/
Click on metapop

Open the mobility modeling.ipynb notebook

Notebook:
metapop_deterministic.ipynb



https://github.com/mattiamazzoli/workshop/

Non-markovian metapopulation models

Non-Markovian mobility: individuals move to destination | and come back to | with returning rate tau

Distinguishability: individuals are distinguishable, compartments populations are labelled, they belong to a patch => i
can divide between infected of i staying in i and infected of j staying in i.

xXm
XM — : O;; travel rate fromito |
L 1+ o0/t o (W) g
O; total rate of travel of individuals of | N I ,
- X l e <
X = Ui-/T T returning rate: 8 hours per day ~ 1/3 days-1
3 1 + Ul‘/T ] 0

where X is the population of the compartment m at equilibrium

N, N,
Ne=—" 45 6/t
l |l +o0,/7 ]1+6j/T]




40,1 T

/lii
ﬂl o 1+Ui/T + ZJ 1+O'i/’l'

/lii force of infection felt by i in i
/1,-]- force of infection on susceptibles of i when they travel to infected places |

O;; travel rate from i to ]

O; total rate of travel of individuals of i

T  returning rate: 8 hours per day ~ 1/3 days-1




Non-markovian metapopulation models

/lil' ﬂlojal:]./f Nl N]
A = + 2. N = +2 0jil T
1 + 0/t j1+o/t |l + 0,/ 1 + 0/t
/11'1' force of infection felt by i ini
/11:]- force of infection on susceptibles of i when they travel to infectgd places |
Gij travel rate from i to |
- | P 1 liojil T
O; total rate of travel of individuals of i A. = ( -+ Z )
i1
_ K . .
T  returning rate: 8 hours per day ~ 1/3 days-1 ]Vl I+ GZ/T j I+ GJ/T

A.. = / I
/ N]-*(l oilT Z1 GZ/T)




Phylogenetic analyses
Uses genomic data as sequenced cases of a pathogen with location and date of specimen

Make associations between sequences by minimising sequences mutations (genomic proximity) and distance (space-time proximity)

2020-Jan-01 2020-Jan-29 2020-Feb-26 2020-Mar-25 2020-Apr-22 2020-May-20 2020-Jun-17 2020-04-16 2020-Aug-13 2020-Sep-1




Phylogenetic analyses
Uses genomic data as sequenced cases of a pathogen with location and date of specimen
Make associations between sequences by minimising sequences mutations (genomic proximity) and distance (space-time proximity)

BEAST is the reference model, uses random walks instead of geographic distance to add stochasticity to estimated routes of seeding
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relationship with mobility

mobility network of trips
originating from phylogenetic
identified sources in the
same period
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Brought this to next level using municipality resolution in Chile

Association between first lineage introduction and mobility
from the lineage source identified from phylogenetic analysis
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Predicting disease arrival times at country scale
From distance to the effective distance

D 50; H1N1 (2009) é
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d, = (1 —IlogP, ) Flow fraction
D, = minpA(I)




Predicting disease arrival times at country scale
From distance to the effective distance
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https://doi.org/10.1126/science.1245200

The hidden geometry of epidemic spread, predicting arrival times

Dirk Brockmann, YouTube

Wave-like diffusion is still there, but now it is projected in another space!



Use phylogenetic trees on genetic sequences from H1N1
Influenza A in 2009

Phylogenetic model informed with from mobility data (air traffic
data) playing as an effective distance

Performed better than informing the model with geographic
distances only or BEAST that assume random walks
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