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The metapopulation scheme



Colizza, Vespignani. Journal of Theoretical Biology 251 (2008) 450–467 

The metapopulation scheme

Spatially structured subpopulations (city, regions, etc).
 
Epidemic dynamic in each subpopulation is the same as in the single population scheme, but individuals travel



Reaction-diffusion analogy for mobility

We consider a network of V populations (nodes), where each node hosts  individuals, which can be in state S, I or R

The total population is preserved as:   

each individual moves from i to j with a diffusion rate  ~ node degree or population size or mobility matrix

Diffusion: individuals travel from one node to another

 

: rate at which an individual is moving from subpopulation i to subpopulation j  

  where  is known real-world mobility between subpopulations

Reaction: in each subpopulation, individuals interact according to an epidemic compartmental model in homogenous mixing  

(mass action principle)
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Colizza, Vespignani. Journal of Theoretical Biology 251 (2008) 450–467 



Recap on the mass-action principle

Force of infection: the rate at which susceptible individuals become infectious 

 force of infection acting within the population at each subpopulation

Mass-action: within each population, new infections are produced by the density of contacts of susceptible and infected individuals

  principle of mass-action: chemical reagents amount determines the product amount

Homogenous mixing: all individuals interact with the same rate, like particles in a box at given temperature T
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Colizza, Vespignani. Journal of Theoretical Biology 251 (2008) 450–467 

Reaction within all subpopulations
Diffusion between subpopulations

Reaction-diffusion wrap-up



The metapopulation scheme

Colizza, Vespignani. Journal of Theoretical Biology 251 (2008) 450–467 



Metapopulation models with markovian mobility

Markovian mobility: individuals move among populations without memory, the probability of moving from i to j depends 
only on the average flows between i and j

Indistinguishability: individuals are not distinguishable, i.e. not labelled, they do not belong to a patch.  
A susceptible in i moving in j might come from anywhere

? non-markovianity of mobility impacts invasion threshold

Balcan D, Vespignani A. Invasion threshold in structured populations with recurrent mobility patterns. J Theor Biol. 2012



Rvachev-Longini model

Rvachev, Leonid A., and Ira M. Longini Jr. "A mathematical model for the global spread of influenza." Mathematical biosciences 75.1 (1985): 3-22.

Rvachev-Longini model (1985):
first model of global spread using diffusion rates in compartmental models

n[1 + (τ1 + 1) + (τ2 + 1)] ODEs

xi(t)
ui(τ, t)
yi(τ, t)
zi(t)

: number of susceptibles in i at time t
: n of exposed in i at time t who were infected at t-tau

: n of infected in i at time who were infected at t-tau

: n of recovered in i at time t

τ1 : max of incubation period

τ2 : max of infectious period

γ(τ) : incubation period distribution

δ(τ) : infectious period distribution

pi(t) : population of i, preservedn : n of populations



Rvachev-Longini model

Rvachev-Longini model (1985):
first model of global spread using diffusion rates in compartmental models

xi(t) +
τ1

∑
τ=0

ui(τ, t) +
τ2

∑
τ=0

yi(τ, t) + zi(t) = pi, ∀t

n[1 + (τ1 + 1) + (τ2 + 1)] ODEs

Rvachev, Leonid A., and Ira M. Longini Jr. "A mathematical model for the global spread of influenza." Mathematical biosciences 75.1 (1985): 3-22.

xi(t)
ui(τ, t)
yi(τ, t)
zi(t)

: number of susceptibles in i at time t
: n of exposed in i at time t who were infected at t-tau

: n of infected in i at time who were infected at t-tau

: n of recovered in i at time t

τ1 : max of incubation period

τ2 : max of infectious period

wi(t) : new infected on time t
Output

γ(τ) : incubation period distribution

δ(τ) : infectious period distribution

pi(t) : population of i, preservedn : n of populations



Rvachev-Longini model

Rvachev-Longini model (1985):
first model of global spread using diffusion rates in compartmental models

Ω[Ai(t)] = Ai(t) +
n

∑
j=1 [Aj

σji

pj
− Ai

σij

pi ]

Rvachev, Leonid A., and Ira M. Longini Jr. "A mathematical model for the global spread of influenza." Mathematical biosciences 75.1 (1985): 3-22.

σij : n x n matrix of trips from i to j (symmetric!)

pi(t) : population of i, preserved

Transport operator

travel rates



Rvachev-Longini model

Rvachev-Longini model (1985):
first model to introduce diffusion rates in compartmental 
models

Rvachev, Leonid A., and Ira M. Longini Jr. "A mathematical model for the global spread of influenza." Mathematical biosciences 75.1 (1985): 3-22.

Very complex model, high n of ODEs

Fitted very well the intensity of influenza pandemic of  
1968-69 from Hong Kong in 52 cities of the world



Simpler deterministic approach

dSi

dt = − β
SiIi
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+ ⟨Ωi(S)⟩

dIi
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SiIi

Ni
− μIi + ⟨Ωi(S)⟩

dRi

dt = μIi + ⟨Ωi(S)⟩

Colizza, V., Barrat, A., Barthélemy, M., & Vespignani, A. (2006). The Modeling of Global Epidemics: Stochastic Dynamics and Predictability. Bulletin of Mathematical Biology, 68(8), 1893–1921. doi:10.1007/s11538-006-9077-9

Encodes the average behavior 
Transport operator is averaged



Simpler deterministic approach

dSi

dt = − β
SiIi

Ni
+ ⟨Ωi(S)⟩

dIi

dt = β
SiIi

Ni
− μIi + ⟨Ωi(S)⟩

dRi

dt = μIi + ⟨Ωi(S)⟩

Colizza, V., Barrat, A., Barthélemy, M., & Vespignani, A. (2006). The Modeling of Global Epidemics: Stochastic Dynamics and Predictability. Bulletin of Mathematical Biology, 68(8), 1893–1921. doi:10.1007/s11538-006-9077-9

Hands on session 
Go to https://github.com/mattiamazzoli/workshop/ 

Click on metapop

Open the mobility modeling.ipynb notebook


Notebook:  
metapop_deterministic.ipynb

https://github.com/mattiamazzoli/workshop/


Non-markovian metapopulation models

Non-Markovian mobility: individuals move to destination j and come back to i with returning rate tau

Distinguishability: individuals are distinguishable, compartments populations are labelled, they belong to a patch => i 
can divide between infected of i staying in i and infected of j staying in i.

Xm
ii =

Xm
i

1 + σi/τ

Xm
ij =

Xm
i

1 + σi/τ
σij /τ

where X is the population of the compartment m at equilibrium

σij travel rate from i to j

τ returning rate: 8 hours per day ~ 1/3 days-1

σi total rate of travel of individuals of i

N*i =
Ni

1 + σi/τ
+ Σj

Nj

1 + σj /τ
σji/τ



Non-markovian metapopulation models

force of infection on susceptibles of i when they travel to infected places j

λi =
λii

1 + σi/τ
+ ∑j

λijσij /τ

1 + σi/τ

λii

λij

force of infection felt by i in i 

σij travel rate from i to j

τ returning rate: 8 hours per day ~ 1/3 days-1

σi total rate of travel of individuals of i



Non-markovian metapopulation models

force of infection on susceptibles of i when they travel to infected places j
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Simon Dellicour, et al Relax, Keep Walking — A Practical Guide to Continuous Phylogeographic Inference with BEAST, Molecular Biology and Evolution, Volume 38, Issue 8, August 2021

Mobility and phylogeographic analyses

Phylogenetic analyses


Uses genomic data as sequenced cases of a pathogen with location and date of specimen


Make associations between sequences by minimising sequences mutations (genomic proximity) and distance (space-time proximity)

 



Simon Dellicour, et al Relax, Keep Walking — A Practical Guide to Continuous Phylogeographic Inference with BEAST, Molecular Biology and Evolution, Volume 38, Issue 8, August 2021

Mobility and phylogeographic analyses

Phylogenetic analyses


Uses genomic data as sequenced cases of a pathogen with location and date of specimen


Make associations between sequences by minimising sequences mutations (genomic proximity) and distance (space-time proximity)


BEAST is the reference model, uses random walks instead of geographic distance to add stochasticity to estimated routes of seeding 

 



Moritz U. G. Kraemer et al. Spatiotemporal invasion dynamics of SARS-CoV-2 lineage B.1.1.7 emergence.Science 373,889-895 (2021)

Mobility and phylogeographic analyses

spatial visualization 
of genomic 
introductions 
resulting from 
phylogenetic model




Moritz U. G. Kraemer et al. Spatiotemporal invasion dynamics of SARS-CoV-2 lineage B.1.1.7 emergence.Science 373,889-895 (2021)

Mobility and phylogeographic analyses

relationship with mobility

mobility network of trips 
originating from phylogenetic 
identified sources in the 
same period



Mobility and phylogeographic analyses

Association between first lineage introduction and mobility 
from the lineage source identified from phylogenetic analysis

Brought this to next level using municipality resolution in Chile

Gutierrez, B. et al. Routes of importation and spatial dynamics of SARS-CoV-2 variants during localized interventions in Chile, PNAS Nexus, Volume 3, Issue 11, November 2024



The hidden geometry of epidemic spread, predicting arrival times

Dirk Brockmann, Dirk Helbing ,The Hidden Geometry of Complex, Network-Driven Contagion Phenomena.Science342,1337-1342(2013)

Predicting disease arrival times at country scale 
From distance to the effective distance

Geographic distance



Dirk Brockmann, Dirk Helbing ,The Hidden Geometry of Complex, Network-Driven Contagion Phenomena.Science342,1337-1342(2013)

Flow fractiondmn = (1 − logPmn)

Dmn = minΓλ(Γ)

The hidden geometry of epidemic spread, predicting arrival times



Dirk Brockmann, Dirk Helbing ,The Hidden Geometry of Complex, Network-Driven Contagion Phenomena.Science342,1337-1342(2013).DOI:10.1126/science.1245200

Predicting disease arrival times at country scale 
From distance to the effective distance

Geographic distance Effective distance

Flow fractiondmn = (1 − logPmn)

Dmn = minΓλ(Γ)

The hidden geometry of epidemic spread, predicting arrival times

https://doi.org/10.1126/science.1245200


Dirk Brockmann, YouTube

The hidden geometry of epidemic spread, predicting arrival times

Wave-like diffusion is still there, but now it is projected in another space!



Using mobility data to inform phylogenetic models

Reimering, S et al. "Phylogeographic reconstruction using air transportation data and its application to the 2009 H1N1 influenza A pandemic." PLoS computational biology 16.2 (2020): e1007101.

Use phylogenetic trees on genetic sequences from H1N1 
Influenza A in 2009


Phylogenetic model informed with from mobility data (air traffic 
data) playing as an effective distance


Performed better than informing the model with geographic 
distances only or BEAST that assume random walks


